- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this article, we develop a Cartesian-mesh finite element method for solving Navier-Stokes interface problems with moving interfaces. The spatial discretization uses the immersed Crouzeix-Raviart nonconforming finite element introduced in [29]. A backward Euler full-discrete scheme is developed which embeds Newton’s iteration to treat the nonlinear convective term. The proposed IFE method does not require any stabilization terms while maintaining its convergence in optimal order. Numerical experiments with various interface shapes and jump coefficients are provided to demonstrate the accuracy of the proposed method. The numerical results are compared to the analytical solution as well as the standard finite element method with body-fitting meshes. Numerical results indicate the optimal order of convergence of the IFE method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/20659.html} }In this article, we develop a Cartesian-mesh finite element method for solving Navier-Stokes interface problems with moving interfaces. The spatial discretization uses the immersed Crouzeix-Raviart nonconforming finite element introduced in [29]. A backward Euler full-discrete scheme is developed which embeds Newton’s iteration to treat the nonlinear convective term. The proposed IFE method does not require any stabilization terms while maintaining its convergence in optimal order. Numerical experiments with various interface shapes and jump coefficients are provided to demonstrate the accuracy of the proposed method. The numerical results are compared to the analytical solution as well as the standard finite element method with body-fitting meshes. Numerical results indicate the optimal order of convergence of the IFE method.