- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop and analyze finite difference methods for the 3D Maxwell's equations in the time domain in three different types of linear dispersive media described as Debye, Lorentz and cold plasma. These methods are constructed by extending the Yee-Finite Difference Time Domain (FDTD) method to linear dispersive materials. We analyze the stability criterion for the FDTD schemes by using the energy method. Based on energy identities for the continuous models, we derive discrete energy estimates for the FDTD schemes for the three dispersive models. We also prove the convergence of the FDTD schemes with perfect electric conducting boundary conditions, which describes the second order accuracy of the methods in both time and space. The discrete divergence-free conditions of the FDTD schemes are studied. Lastly, numerical examples are given to demonstrate and confirm our results.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/19113.html} }In this paper, we develop and analyze finite difference methods for the 3D Maxwell's equations in the time domain in three different types of linear dispersive media described as Debye, Lorentz and cold plasma. These methods are constructed by extending the Yee-Finite Difference Time Domain (FDTD) method to linear dispersive materials. We analyze the stability criterion for the FDTD schemes by using the energy method. Based on energy identities for the continuous models, we derive discrete energy estimates for the FDTD schemes for the three dispersive models. We also prove the convergence of the FDTD schemes with perfect electric conducting boundary conditions, which describes the second order accuracy of the methods in both time and space. The discrete divergence-free conditions of the FDTD schemes are studied. Lastly, numerical examples are given to demonstrate and confirm our results.