- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A modified primal-dual weak Galerkin (M-PDWG) finite element method is designed for the second order elliptic equation in non-divergence form. Compared with the existing PDWG methods proposed in [6], the system of equations resulting from the M-PDWG scheme could be equivalently simplified into one equation involving only the primal variable by eliminating the dual variable (Lagrange multiplier). The resulting simplified system thus has significantly fewer degrees of freedom than the one resulting from existing PDWG scheme. Optimal order error estimates are derived for the numerical approximations in the discrete $H^2$-norm, $H^1$-norm and $L^2$-norm respectively. Extensive numerical results are demonstrated for both the smooth and non-smooth coefficients on convex and non-convex domains to verify the accuracy of the theory developed in this paper.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/19112.html} }A modified primal-dual weak Galerkin (M-PDWG) finite element method is designed for the second order elliptic equation in non-divergence form. Compared with the existing PDWG methods proposed in [6], the system of equations resulting from the M-PDWG scheme could be equivalently simplified into one equation involving only the primal variable by eliminating the dual variable (Lagrange multiplier). The resulting simplified system thus has significantly fewer degrees of freedom than the one resulting from existing PDWG scheme. Optimal order error estimates are derived for the numerical approximations in the discrete $H^2$-norm, $H^1$-norm and $L^2$-norm respectively. Extensive numerical results are demonstrated for both the smooth and non-smooth coefficients on convex and non-convex domains to verify the accuracy of the theory developed in this paper.