- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this article, we consider a weak Galerkin finite element method for the two dimensional exterior Helmholtz problem. After introducing a nonlocal boundary condition by means of the exact Dirichlet to Neumann (DtN) operator for the exterior problem, we prove that the existence and uniqueness of the weak Galerkin finite element solution for this problem. Then, applying some projection techniques, we establish a priori error estimate, which include the effect of truncation of the DtN boundary condition as well as the spatial discretization. Finally, some numerical examples are presented to confirm the theoretical predictions.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/17873.html} }In this article, we consider a weak Galerkin finite element method for the two dimensional exterior Helmholtz problem. After introducing a nonlocal boundary condition by means of the exact Dirichlet to Neumann (DtN) operator for the exterior problem, we prove that the existence and uniqueness of the weak Galerkin finite element solution for this problem. Then, applying some projection techniques, we establish a priori error estimate, which include the effect of truncation of the DtN boundary condition as well as the spatial discretization. Finally, some numerical examples are presented to confirm the theoretical predictions.