- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 16 (2019), pp. 891-924.
Published online: 2019-08
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
Many important physical problems, such as fluid structure interaction or conjugate heat transfer, require numerical methods that compute boundary derivatives or fluxes to high accuracy. This paper proposes a novel approach to calculating accurate approximations of boundary derivatives of elliptic problems. We describe a new continuous finite element method based on $p$-refinement of cells adjacent to the boundary that increases the local degree of the approximation. We prove that the order of the approximation on the $p$-refined cells is, in 1D, determined by the rate of convergence at the mesh vertex connecting the higher and lower degree cells and that this approach can be extended, in a restricted setting, to 2D problems. The proven convergence rates are numerically verified by a series of experiments in both 1D and 2D. Finally, we demonstrate, with additional numerical experiments, that the $p$-refinement method works in more general geometries.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/13259.html} }Many important physical problems, such as fluid structure interaction or conjugate heat transfer, require numerical methods that compute boundary derivatives or fluxes to high accuracy. This paper proposes a novel approach to calculating accurate approximations of boundary derivatives of elliptic problems. We describe a new continuous finite element method based on $p$-refinement of cells adjacent to the boundary that increases the local degree of the approximation. We prove that the order of the approximation on the $p$-refined cells is, in 1D, determined by the rate of convergence at the mesh vertex connecting the higher and lower degree cells and that this approach can be extended, in a restricted setting, to 2D problems. The proven convergence rates are numerically verified by a series of experiments in both 1D and 2D. Finally, we demonstrate, with additional numerical experiments, that the $p$-refinement method works in more general geometries.