- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
An efficient multigrid method is proposed to compute the ground state solution of Bose-Einstein condensations by the finite element method based on the combination of the multigrid method for nonlinear eigenvalue problem and an efficient implementation for the nonlinear iteration. The proposed numerical method not only has the optimal convergence rate, but also has the asymptotically optimal computational efficiency which is independent from the nonlinearity of the problem. The independence from the nonlinearity means that the asymptotic estimate of the computational work can reach almost the same as that of solving the corresponding linear boundary value problem by the multigrid method. Some numerical experiments are provided to validate the efficiency of the proposed method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/13254.html} }An efficient multigrid method is proposed to compute the ground state solution of Bose-Einstein condensations by the finite element method based on the combination of the multigrid method for nonlinear eigenvalue problem and an efficient implementation for the nonlinear iteration. The proposed numerical method not only has the optimal convergence rate, but also has the asymptotically optimal computational efficiency which is independent from the nonlinearity of the problem. The independence from the nonlinearity means that the asymptotic estimate of the computational work can reach almost the same as that of solving the corresponding linear boundary value problem by the multigrid method. Some numerical experiments are provided to validate the efficiency of the proposed method.