Volume 16, Issue 4
Error Analysis of an Immersed Finite Element Method for Time-Dependent Beam Interface Problems

Min Lin

DOI:

Int. J. Numer. Anal. Mod., 16 (2019), pp. 626-646.

Published online: 2019-02

Preview Purchase PDF 75 1282
Export citation
  • Abstract

This article presents an error analysis of a Hermite cubic immersed finite element (IFE) method for solving certain initial-boundary value problems (IBVP) modeling a time-dependent Euler-Bernoulli beam formed by multiple materials together with suitable jump conditions at material interfaces. The optimal convergence of this IFE method is shown by both theoretical proof and numerical simulations.

  • Keywords

Interface problem, time-dependent beam model, IFE method, fully discrete, error analysis.

  • AMS Subject Headings

65N15, 65N30, 65N50, 35R05

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

minlin@swpu.edu.cn (Min Lin)

  • BibTex
  • RIS
  • TXT
@Article{IJNAM-16-626, author = {Lin , Min }, title = {Error Analysis of an Immersed Finite Element Method for Time-Dependent Beam Interface Problems}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2019}, volume = {16}, number = {4}, pages = {626--646}, abstract = {

This article presents an error analysis of a Hermite cubic immersed finite element (IFE) method for solving certain initial-boundary value problems (IBVP) modeling a time-dependent Euler-Bernoulli beam formed by multiple materials together with suitable jump conditions at material interfaces. The optimal convergence of this IFE method is shown by both theoretical proof and numerical simulations.

}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/13018.html} }
TY - JOUR T1 - Error Analysis of an Immersed Finite Element Method for Time-Dependent Beam Interface Problems AU - Lin , Min JO - International Journal of Numerical Analysis and Modeling VL - 4 SP - 626 EP - 646 PY - 2019 DA - 2019/02 SN - 16 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/13018.html KW - Interface problem, time-dependent beam model, IFE method, fully discrete, error analysis. AB -

This article presents an error analysis of a Hermite cubic immersed finite element (IFE) method for solving certain initial-boundary value problems (IBVP) modeling a time-dependent Euler-Bernoulli beam formed by multiple materials together with suitable jump conditions at material interfaces. The optimal convergence of this IFE method is shown by both theoretical proof and numerical simulations.

Min Lin. (2019). Error Analysis of an Immersed Finite Element Method for Time-Dependent Beam Interface Problems. International Journal of Numerical Analysis and Modeling. 16 (4). 626-646. doi:
Copy to clipboard
The citation has been copied to your clipboard