- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Wave equations with interface jump conditions have wide applications in engineering and science, for example in acoustics, elastodynamics, seismology, and electromagnetics. In this paper, an efficient non-traditional finite element method with non-body-fitted grids is proposed to solve variable coefficient wave equations with interface jump conditions. Numerical experiments show that this method is approximately second order accurate both in the $L^∞$ norm and $L^2$ norm for piecewise smooth solutions.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/12791.html} }Wave equations with interface jump conditions have wide applications in engineering and science, for example in acoustics, elastodynamics, seismology, and electromagnetics. In this paper, an efficient non-traditional finite element method with non-body-fitted grids is proposed to solve variable coefficient wave equations with interface jump conditions. Numerical experiments show that this method is approximately second order accurate both in the $L^∞$ norm and $L^2$ norm for piecewise smooth solutions.