TY - JOUR T1 - Complete Convergence for Weighted Sums of Negatively Superadditive Dependent Random Variables AU - Zhou , Yu AU - Xia , Fengxi AU - Chen , Yan AU - Wang , Xuejun JO - Journal of Mathematical Study VL - 3 SP - 287 EP - 294 PY - 2014 DA - 2014/09 SN - 47 DO - http://doi.org/10.4208/jms.v47n3.14.04 UR - https://global-sci.org/intro/article_detail/jms/9959.html KW - Negatively superadditive dependent random variables, Rosenthal type inequality, complete convergence. AB -
Let $\{X_n,n\geq1\}$ be a sequence of negatively superadditive dependent (NSD, in short) random variables and $\{a_{nk}, 1\leq k\leq n, n\geq1\}$ be an array of real numbers. Under some suitable conditions, we present some results on complete convergence for weighted sums $\sum_{k=1}^na_{nk}X_k$ of NSD random variables by using the Rosenthal type inequality. The results obtained in the paper generalize some corresponding ones for independent random variables and negatively associated random variables.