TY - JOUR T1 - High Accuracy Spectral Method for the Space-Fractional Diffusion Equations AU - Zhai , Shuying AU - Gui , Dongwei AU - Zhao , Jianping AU - Feng , Xinlong JO - Journal of Mathematical Study VL - 3 SP - 274 EP - 286 PY - 2014 DA - 2014/09 SN - 47 DO - http://doi.org/10.4208/jms.v47n3.14.03 UR - https://global-sci.org/intro/article_detail/jms/9958.html KW - Space-fractional diffusion equation, fractional Laplacian, Chebyshev collocation method, Fourier spectral method, implicit-explicit Runge-Kutta method. AB -
In this paper, a high order accurate spectral method is presented for the space-fractional diffusion equations. Based on Fourier spectral method in space and Chebyshev collocation method in time, three high order accuracy schemes are proposed. The main advantages of this method are that it yields a fully diagonal representation of the fractional operator, with increased accuracy and efficiency compared with low-order counterparts, and a completely straightforward extension to high spatial dimensions. Some numerical examples, including Allen-Cahn equation, are conducted to verify the effectiveness of this method.