TY - JOUR T1 - Existence of Renormalized Solutions of Nonlinear Elliptic Problems in Weighted Variable-Exponent Space AU - Akdim , Youssef AU - Allalou , Chakir JO - Journal of Mathematical Study VL - 4 SP - 375 EP - 397 PY - 2015 DA - 2015/12 SN - 48 DO - http://doi.org/10.4208/jms.v48n4.15.05 UR - https://global-sci.org/intro/article_detail/jms/9943.html KW - Weighted variable exponent Sobolev spaces, truncations, Young's Inequality, elliptic operators. AB -
In this article, we study a general class of nonlinear degenerated elliptic problems associated with the differential inclusion $β(u)-div(a(x,Du)+F(u)) ∋ f$ in $Ω$ where $f ∈ L^1(Ω).$ A vector field $a(.,.)$ is a Carathéodory function. Using truncation techniques and the generalized monotonicity method in the framework of weighted variable exponent Sobolev spaces, we prove existence of renormalized solutions for general $L^1$-data.