TY - JOUR T1 - Convergence of Finite Volume Schemes for Hamilton-Jacobi Equations with Dirichlet Boundary Conditions AU - Kim , Kwangil AU - Li , Yonghai JO - Journal of Computational Mathematics VL - 3 SP - 227 EP - 247 PY - 2015 DA - 2015/06 SN - 33 DO - http://doi.org/10.4208/jcm.1411-m4406 UR - https://global-sci.org/intro/article_detail/jcm/9839.html KW - Hamilton-Jacobi equations, Dirichlet boundary conditions, Finite volume, Monotone schemes. AB -
We study numerical methods for time-dependent Hamilton-Jacobi equations with weak Dirichlet boundary conditions. We first propose a new class of abstract monotone approximation schemes and get a convergence rate of 1/2 . Then, according to the abstract convergence results, by newly constructing monotone finite volume approximations on interior and boundary points, we obtain convergent finite volume schemes for time-dependent Hamilton-Jacobi equations with weak Dirichlet boundary conditions. Finally give some numerical results.