TY - JOUR T1 - Orthogonal Projections and the Perturbation of the Eigenvalues of Singular Pencils AU - Ji-Guang Sun JO - Journal of Computational Mathematics VL - 1 SP - 63 EP - 74 PY - 1983 DA - 1983/01 SN - 1 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9682.html KW - AB -

In this paper we obtain a Hoffman-Wielandt type theorem and a Bauer-Fike type theorem for singular pencils of matrics. These results delineate the relations between the perturbation of the eigenvalues of a singular diagonalizable pencil $A-λB$ and the variation of the orthogonal projection onto the column space $\mathcal{R} \Bigg( \begin{matrix} A^H \\ B^H  \end{matrix} \Bigg)$.