TY - JOUR
T1 - Fast Parallel Algorithms for Computing Generalized Inverses A^+ and A_{MN}^+
AU - Guo-rong Wang & Sen-quan Lu
JO - Journal of Computational Mathematics
VL - 4
SP - 348
EP - 354
PY - 1988
DA - 1988/06
SN - 6
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9523.html
KW -
AB - The parallel arithmetic complexities for computing generalized inverse $A^+$, computing the minimum-norm least-squares solution of Ax=b, computing order m+n-r determinants and finding the characteristic polynomials of order m+n-r matrices are shown to have the same grawth rate. Algorithms are given that compute $A^+$ and $A_{MN}^+$ in $O(\log r\dot \log n+\log m)$ and $O(\log^2n+\log m)$ steps using a number of processors which is a ploynomial in m,n and r $(A\in B_r^{m\times n},r=rank A)$.