TY - JOUR T1 - Extrapolation of Finite Element Approximation in a Rectangular Domain AU - Chen , Chuan-Miao AU - Lin , Qun JO - Journal of Computational Mathematics VL - 3 SP - 227 EP - 233 PY - 1989 DA - 1989/07 SN - 7 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9473.html KW - AB -
Recently, the Richardson extrapolation for the elliptic Ritz projection with linear triangular elements on a general convex polygonal domain was discussed by Lin and Lu. We go back in this note to the simplest case, i.e. the bilinear rectangular elements on a rectangular domain which is a parallel case of the one-triangle model in the early work of Lin and Liu. We find that the finite element argument for the Richardson extrapolation with an accuracy of $O(h^4)$ needs only the regularity of $H^{4,\infty}$ for the solution $u$ but the finite difference argument for extrapolation with $O(h^{s+\alpha})$ accuracy needs $u\in C^{5+\alpha}(0<\alpha<1)$. Moreover, a formula is suggested to guarantee the extrapolation of $O(h^4)$ accuracy at fine gridpoints as well as at coarse gridpoints.