TY - JOUR T1 - A Completely Exponentially Fitted Difference Scheme for a Singular Perturbation Problem AU - Lin , Peng-Cheng AU - Sun , Guang-Fu JO - Journal of Computational Mathematics VL - 1 SP - 1 EP - 15 PY - 1990 DA - 1990/08 SN - 8 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9414.html KW - AB -
A completely exponentially fitted difference scheme is considered for the singular perturbation problem: $\epsilon U^{''}+a(x) U^{'}-b(x) U=f(x) \ {\rm for} \ 0 \lt x \lt 1$, with U(0), and U(1) given, $\epsilon \in (0,1]$ and $a(x) \gt α \gt 0, b(x)\geq 0$. It is proven that the scheme is uniformly second-order accurate.