TY - JOUR T1 - Extensions of the Kantorovich Inequality and the Bauer-Fike Inequality AU - Sun , Ji-Guang JO - Journal of Computational Mathematics VL - 4 SP - 360 EP - 368 PY - 1991 DA - 1991/09 SN - 9 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9411.html KW - AB -
This paper proves a Kantorovich-type inequality on the matrix of the type $\frac{1}{2}(Q^H_1 AQ_1 Q^H_1A^{-1} Q_1+Q^H_1A^{-1}Q_1Q^H_1AQ_1)$, where $A$ is an $n\times n$ positive definite Hermitian matrix and $Q_1$ is an $n\times m$ matrix with rank $(Q_1)=m$. The result is applied to get an extension of the Bauer-Fike inequality on condition numbers of similarities that block diagonalized matrices.