TY - JOUR T1 - Optimal Interior and Local Error Estimates of a Recovered Gradient of Linear Elements on Nonuniform Triangulations AU - Hlaváček , I. AU - Křížek , M. JO - Journal of Computational Mathematics VL - 4 SP - 345 EP - 362 PY - 1996 DA - 1996/08 SN - 14 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9244.html KW - AB -
We examine a simple averaging formula for the gradient of linear finite elements in $R^d$ whose interpolation order in the $L^q$-norm is $O(h^2)$ for $d<2q$ and nonuniform triangulations. For elliptic problems in $R^2$ we derive an interior superconvergence for the averaged gradient over quasiuniform triangulations. Local error estimates up to a regular part of the boundary and the effect of numerical integration are also investigated.