TY - JOUR T1 - Order Results for Algebraically Stable Mono-Implicit Runge-Kutta Methods AU - Xiao , Ai-Guo JO - Journal of Computational Mathematics VL - 6 SP - 639 EP - 644 PY - 1999 DA - 1999/12 SN - 17 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9134.html KW - AB -
It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage(1994) has shown that the order of an s-stage mono-implicit Runge-Kutta method is at most s+1 and the stage order is at most 3. In this paper, it is shown that the order of an s-stage mono-implicit Runge-Kutta method being algebraically stable is at most min $(\widetilde{s}, 4)$, and the stage order together with the optimal B-convergence order is at most min(s,2), where