TY - JOUR T1 - A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H(1) + H(2) + H(3) AU - Tang , Yi-Fa JO - Journal of Computational Mathematics VL - 1 SP - 89 EP - 96 PY - 2002 DA - 2002/02 SN - 20 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/8901.html KW - Time-Reversible symplectic scheme, Splitable hamiltonian. AB -
In this note, we will give a proof for the uniqueness of 4th-order time-reversible symplectic difference schemes of 13th-fold compositions of phase flows $\phi ^t_{H(1)}, \phi ^t_{H(2)}, \phi ^t_{H(3)}$ with different temporal parameters for splitable hamiltonian $H=H^{(1)}+H^{(2)}+H^{(3)}$.