TY - JOUR T1 - Uniform Superconvergence of a Finite Element Method with Edge Stabilization for Convection-Diffusion Problems AU - Franz , Sebastian AU - Linß , Torsten AU - Roos , Hans-Görg AU - Schiller , Sebastian JO - Journal of Computational Mathematics VL - 1 SP - 32 EP - 44 PY - 2010 DA - 2010/02 SN - 28 DO - http://doi.org/10.4208/jcm.2009.09-m1005 UR - https://global-sci.org/intro/article_detail/jcm/8505.html KW - Convection-diffusion problems, Edge stabilization, FEM, Uniform convergence, Shishkin mesh. AB -
In the present paper the edge stabilization technique is applied to a convection-diffusion problem with exponential boundary layers on the unit square, using a Shishkin mesh with bilinear finite elements in the layer regions and linear elements on the coarse part of the mesh. An error bound is proved for ${||πu−u^h||}_E$ where $πu$ is some interpolant of the solution $u$ and $u^h$ the discrete solution. This supercloseness result implies an optimal error estimate with respect to the $L_2$ norm and opens the door to the application of postprocessing for improving the discrete solution.