TY - JOUR T1 - Uniformly Convergent Nonconforming Element for 3-D Fourth Order Elliptic Singular Perturbation Problem AU - Hongru Chen & Shaochun Chen JO - Journal of Computational Mathematics VL - 6 SP - 687 EP - 695 PY - 2014 DA - 2014/12 SN - 32 DO - http://doi.org/10.4208/jcm.1405-m4303 UR - https://global-sci.org/intro/article_detail/jcm/8409.html KW - Nonconforming finite element, Singular perturbation problem, Uniform error estimates. AB -
In this paper, using a bubble function, we construct a cuboid element to solve the fourth order elliptic singular perturbation problem in three dimensions. We prove that the nonconforming $C^0$-cuboid element converges in the energy norm uniformly with respect to the perturbation parameter.