TY - JOUR T1 - On the Approximation of the Derivatives of Spline Quasi-Interpolation in Cubic Spline $S_3^{1,2}(∆_{mn}^{(2)})$ AU - Jiang Qian & Fan Wang JO - Numerical Mathematics: Theory, Methods and Applications VL - 1 SP - 1 EP - 22 PY - 2014 DA - 2014/07 SN - 7 DO - http://doi.org/10.4208/nmtma.2014.y12035 UR - https://global-sci.org/intro/article_detail/nmtma/5863.html KW - Bivariate splines, conformality of smoothing cofactor method, nonuniform type-2 triangulation, quasi-interpolation, modulus of continuity. AB -
In this paper, based on the basis composed of two sets of splines with distinct local supports, cubic spline quasi-interpolating operators are reviewed on nonuniform type-2 triangulation. The variation diminishing operator is defined by discrete linear functionals based on a fixed number of triangular mesh-points, which can reproduce any polynomial of nearly best degrees. And by means of the modulus of continuity, the estimation of the operator approximating a real sufficiently smooth function is reviewed as well. Moreover, the derivatives of the nearly optimal variation diminishing operator can approximate that of the real sufficiently smooth function uniformly over quasi-uniform type-2 triangulation. And then the convergence results are worked out.