TY - JOUR T1 - The Cauchy Problem for the Generalized Korteweg-de Vries-Burgers Equation in _H AU - Yueling Jia JO - Journal of Partial Differential Equations VL - 3 SP - 275 EP - 288 PY - 2003 DA - 2003/08 SN - 16 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jpde/5425.html KW - generalized Korteweg-de Vries-Burgers equation KW - Cauchy problem KW - space-time dual estimates KW - \dot{H}^{-s} solution AB - The Cauchy problem for the generalized Korteweg-de Vries-Burgers equation is considered and the local existence and uniqueness of solutions in L^q(0, T;L^p) ∩ L^∞(0, T; \dot{H}^{-s})(0 ≤ s < 1) are obtained for initial data in \dot{H}^{-s}. Moreover, the local solutions are global if the initial data are sufficiently small in critical case. Particularly, for s = 0, the generalized Korteweg-de Vries-Burgers equation satisfies the energy equality, so the initial data can be arbitrarily large to obtain the global solution.