TY - JOUR T1 - Gradient Estimates for a Nonlinear Diffusion Equation on Complete Manifolds AU - Jiayong Wu JO - Journal of Partial Differential Equations VL - 1 SP - 68 EP - 79 PY - 2010 DA - 2010/02 SN - 23 DO - http://doi.org/10.4208/jpde.v23.n1.4 UR - https://global-sci.org/intro/article_detail/jpde/5222.html KW - Local gradient estimate KW - nonlinear diffusion equation KW - Bakry-Émery Ricci curvature AB -

Let (M,g) be a complete non-compact Riemannian manifold with the m- dimensional Bakry-Émery Ricci curvature bounded below by a non-positive constant. In this paper, we give a localized Hamilton-type gradient estimate for the positive smooth bounded solutions to the following nonlinear diffusion equation u_t=Δu-∇φ·∇u-au\log u-bu, where φ is a C^2 function, and a ≠ 0 and b are two real constants. This work generalizes the results of Souplet and Zhang (Bull. London Math. Soc., 38 (2006), pp. 1045-1053) and Wu (Preprint, 2008).