TY - JOUR T1 - Extremal Functions for Trudinger-Moser Type Inequalities in ℝN AU - Li , Xiaomeng JO - Journal of Partial Differential Equations VL - 1 SP - 64 EP - 75 PY - 2017 DA - 2017/03 SN - 30 DO - http://doi.org/10.4208/jpde.v30.n1.5 UR - https://global-sci.org/intro/article_detail/jpde/5071.html KW - Extremal function KW - Trudinger-Moser inequality AB -
Let $N\geq 2$, $\alpha_N=N\omega_{N-1}^{1/(N-1)}$, where $\omega_{N-1}$ denotes the area of the unit sphere in $\mathbb{R}^N$. In this note, we prove that for any $0<\alpha
$$\sup_{u\in W^{1,N}(\mathbb{R}^{N}),\|u\|_{W^{1,N}(\mathbb{R}^{N})}\leq 1}\int_{\mathbb{R}^{N}}|u|^\beta\Big(e^{\alpha |u|^{\frac{N}{N-1}}}-\sum_{j=0}^{N-2}\frac{\alpha^{j}}{j!}|u|^{\frac{Nj}{N-1}}\Big){\rm d}x$$
can be attained by some function $u\in W^{1,N}(\mathbb{R}^N)$ with $\|u\|_{W^{1,N}(\mathbb{R}^N)}=1$. Moreover, when $\alpha\geq\alpha_{N}$, the above supremum is infinity.