TY - JOUR T1 - Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces AU - C. Xue, K. Zhu & Y. P. Chen JO - Analysis in Theory and Applications VL - 3 SP - 205 EP - 214 PY - 2016 DA - 2016/07 SN - 32 DO - http://doi.org/10.4208/ata.2016.v32.n3.1 UR - https://global-sci.org/intro/article_detail/ata/4666.html KW - Singular integral, variable kernel, fractional differentiation, BMO Sobolev space, weighted Morrey spaces. AB -

Let $T$ be the singular integral operator with variable kernel, $T^*$ be the adjoint of $T$ and $T^{\sharp}$ be the pseudo-adjoint of $T$. Let $T_1T_2$ be the product of $T_1$ and $T_2,$ $T_1\circ T_2$ be the pseudo product of $T_1$ and $T_2.$ In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator $D^\gamma$ on the weighted Morrey spaces.