TY - JOUR T1 - The Negative Spectrum of Schrödinger Operators with Fractal Potentials AU - B. Wu, H. Y. Wang & W. Y. Su JO - Analysis in Theory and Applications VL - 4 SP - 381 EP - 393 PY - 2017 DA - 2017/10 SN - 31 DO - http://doi.org/10.4208/ata.2015.v31.n4.4 UR - https://global-sci.org/intro/article_detail/ata/4646.html KW - Anisotropic function space, anisotropic fractal, Schrödinger operators, negative eigenvalues. AB -

Let $Γ ⊂ \mathbb{R}^2$ be a regular anisotropic fractal. We discuss the problem of the negative spectrum for the Schrödinger operators associated with the formal expression $$H_β =id−∆+βtr^Γ_b, β∈R,$$ acting in the anisotropic Sobolev space $W^{1,α}_2(\mathbb{R}^2)$, where $∆$ is the Dirichlet Laplanian in $\mathbb{R}^2$ and $tr^Γ_b$ is a fractal potential (distribution) supported by $Γ$.