TY - JOUR T1 - $L^p$ Bounds for the Commutators of Rough Singular Integrals Associated with Surfaces of Revolution AU - Z. Niu, K. Zhu & Y. Chen JO - Analysis in Theory and Applications VL - 2 SP - 176 EP - 183 PY - 2017 DA - 2017/04 SN - 31 DO - http://doi.org/10.4208/ata.2015.v31.n2.7 UR - https://global-sci.org/intro/article_detail/ata/4632.html KW - Commutator, singular integral, surface of revolution, rough kernel. AB -

In this paper, we establish the $L^p({\Bbb R}^{n+1} )$ boundedness for the commutators of singular integrals associated to surfaces of revolution, $\{(t,\phi(|t|)):t\in {\Bbb R}^{n}\}$, with rough kernels $\Omega\in L(\log L)^2({\Bbb S}^{n-1})$, if $\phi(|t|)=|t|$.