TY - JOUR T1 - $L^2$ Stability and Weak-BV Uniqueness for Nonisentropic Euler Equations AU - Chen , Geng AU - Vasseur , Alexis F. JO - Communications in Mathematical Analysis and Applications VL - 3 SP - 450 EP - 482 PY - 2024 DA - 2024/09 SN - 3 DO - http://doi.org/10.4208/cmaa.2024-0019 UR - https://global-sci.org/intro/article_detail/cmaa/23384.html KW - Compressible Euler system, uniqueness, stability, relative entropy, conservation law. AB -
We prove the $L^2$ stability for weak solutions of non-isentropic Euler equations in one space dimension whose initial data are perturbed from a small BV data under the $L^2$ distance. Using this result, we can show the uniqueness of small BV solutions among a large family of weak solutions.