TY - JOUR T1 - The Nehari Manifold for a Class of Singular $\psi$-Riemann-Liouville Fractional with $p$-Laplacian Operator Differential Equations AU - Horrigue , Samah AU - Alsulami , Mona AU - Alsaeedi , Bayan Abduallah JO - Advances in Applied Mathematics and Mechanics VL - 5 SP - 1104 EP - 1120 PY - 2024 DA - 2024/07 SN - 16 DO - http://doi.org/10.4208/aamm.OA-2022-0009 UR - https://global-sci.org/intro/article_detail/aamm/23287.html KW - $\psi$-Riemann-Liouville fractional derivative, nonlinear fractional differential equations, $p$-Laplacian operator, existence of solutions, Nehari manifold method. AB -
Using Nehari manifold method combined with fibring maps, we show the
existence of nontrivial, weak, positive solutions of the nonlinear $\psi$-Riemann-Liouville
fractional boundary value problem involving the $p$-Laplacian operator, given by
where $λ>0, 0<\gamma<1< p$ and $\frac{1}{p}<\alpha≤1,$ $g∈C([0,T])$ and $f ∈C^1
([0,T]×\mathbb{R},\mathbb{R}).$ A useful
examples are presented in order to illustrate the validity of our main results.