TY - JOUR T1 - Arbitrarily High-Order Energy-Conserving Methods for Hamiltonian Problems with Quadratic Holonomic Constraints AU - Amodio , Pierluigi AU - Brugnano , Luigi AU - Frasca-Caccia , Gianluca AU - Iavernaro , Felice JO - Journal of Computational Mathematics VL - 4 SP - 1145 EP - 1171 PY - 2024 DA - 2024/04 SN - 42 DO - http://doi.org/10.4208/jcm.2301-m2022-0065 UR - https://global-sci.org/intro/article_detail/jcm/23050.html KW - Constrained Hamiltonian systems, Quadratic holonomic constraints, Energy-conserving methods, Line integral methods, Hamiltonian Boundary Value Methods, HBVMs. AB -
In this paper, we define arbitrarily high-order energy-conserving methods for Hamiltonian systems with quadratic holonomic constraints. The derivation of the methods is made within the so-called line integral framework. Numerical tests to illustrate the theoretical findings are presented.