TY - JOUR T1 - Local Existence of Strong Solutions to the Generalized MHD Equations AU - Jin , Liangbing AU - Cheng , Xinru JO - Journal of Nonlinear Modeling and Analysis VL - 1 SP - 184 EP - 193 PY - 2024 DA - 2024/03 SN - 6 DO - http://doi.org/10.12150/jnma.2024.184 UR - https://global-sci.org/intro/article_detail/jnma/22974.html KW - Generalized MHD system, local existence, Fourier truncation. AB -
This paper devotes to consider the local existence of the strong solutions to the generalized MHD system with fractional dissipative terms $Λ^{2α}u$ for the velocity field and $Λ^{2α}b$ for the magnetic field, respectively. We construct the approximate solutions by the Fourier truncation method, and use energy method to obtain the local existence of strong solutions in $H^s (\mathbb{R}^n)$ $(s > max \{\frac{n}{2} + 1 − 2α, 0\})$ for any $α ≥ 0.$