TY - JOUR T1 - The Relaxation Limit of a Quasi-Linear Hyperbolic-Parabolic Chemotaxis System Modeling Vasculogenesis AU - Liu , Qingqing AU - Peng , Hongyun AU - Wang , Zhi-An JO - Communications in Mathematical Analysis and Applications VL - 1 SP - 1 EP - 18 PY - 2024 DA - 2024/03 SN - 3 DO - http://doi.org/10.4208/cmaa.2024-0001 UR - https://global-sci.org/intro/article_detail/cmaa/22938.html KW - Hyperbolic-parabolic model, vasculogenesis, diffusion, relaxation limit. AB -
This paper is concerned with the relaxation limit of a three-dimensional quasi-linear hyperbolic-parabolic chemotaxis system modeling vasculogenesis when the initial data are prescribed around a constant ground state. When the relaxation time tends to zero (i.e. the damping is strong), we show that the strong-weak limit of the cell density and chemoattractant concentration satisfies a parabolic-elliptic Keller-Segel type chemotaxis system in the sense of distribution.