TY - JOUR T1 - The Nonexistence of Global Solutions for a Damped Time Fractional Diffusion Equation with Nonlinear Memory AU - Qian , Qian AU - Li , Yaning JO - Journal of Information and Computing Science VL - 1 SP - 003 EP - 018 PY - 2024 DA - 2024/01 SN - 17 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jics/22357.html KW - fractional derivative, blow-up, test function, nonlinear memory. AB -
In this paper, we study the non-global existence of solutions to the following time fractional nonlinear diffusion equations $$\begin{cases} ^cD^{\alpha}_{0|t}u-\Delta u+(1+t)^ru_t=I^{\beta}_{0|t}(|u|^{p-1}u), \ x\in \mathbb{R}^n, \ t>0 \\ u(0,x)=u_0(x), \ u_t(0,x)=u_1(x), \ x\in\mathbb{R}^n, \end{cases}$$ where $1<\alpha<2$, $\beta\in(0,1)$, $1<\alpha+\beta<2$, $r\in (-1,1)$, $p>1$, $u_0, u_1\in L^q(\mathbb{R}^n)(q>1)$ and $^cD^{\alpha}_{0|t}u$ denotes left Caputo fractional derivative of order $\alpha$. By using the test function method, we prove that the problem admits no global weak solution with suitable initial data when $p$ falls in different intervals. Our results generalize that in [4].