TY - JOUR T1 - Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Schrödinger Equations AU - Qin , Hongyu AU - Wu , Fengyan AU - Zhou , Boya JO - Journal of Computational Mathematics VL - 6 SP - 1305 EP - 1324 PY - 2023 DA - 2023/11 SN - 41 DO - http://doi.org/10.4208/jcm.2112-m2021-0113 UR - https://global-sci.org/intro/article_detail/jcm/22113.html KW - Fractional Grönwall type inequality, Nonlinear time-fractional Schrödinger equation, Error analysis. AB -
We present Alikhanov linearized Galerkin methods for solving the nonlinear time fractional Schrödinger equations. Unconditionally optimal estimates of the fully-discrete scheme are obtained by using the fractional time-spatial splitting argument. The convergence results indicate that the error estimates hold without any spatial-temporal stepsize restrictions. Numerical experiments are done to verify the theoretical results.