TY - JOUR T1 - Positive Ground State Solutions for Schrödinger-Poisson System with General Nonlinearity and Critical Exponent AU - Chen , Qingfang AU - Liao , Jiafeng JO - Journal of Partial Differential Equations VL - 1 SP - 68 EP - 81 PY - 2022 DA - 2022/12 SN - 36 DO - http://doi.org/10.4208/jpde.v36.n1.5 UR - https://global-sci.org/intro/article_detail/jpde/21294.html KW - Schrödinger-Poisson system KW - Sobolev critical exponent KW - positive ground state solution KW - Mountain pass theorem. AB -
In this paper, we consider the following Schrödinger-Poisson system \begin{equation*}\begin{cases} -\Delta u + \eta\phi u = f(x,u) + u^5,& x\in\Omega,\\ -\Delta\phi=u^2,& x\in\Omega,\\u = \phi =0,& x\in \partial\Omega, \end{cases}\end{equation*} where $\Omega$ is a smooth bounded domain in $R^3$, $\eta=\pm1$ and the continuous function $f$ satisfies some suitable conditions. Based on the Mountain pass theorem, we prove the existence of positive ground state solutions.