TY - JOUR T1 - $\mathfrak{X}$-Gorenstein Projective Dimensions AU - Wang , Jie AU - Xu , Xiaowei AU - Zhao , Zhibing JO - Journal of Mathematical Study VL - 4 SP - 398 EP - 414 PY - 2022 DA - 2022/11 SN - 55 DO - http://doi.org/10.4208/jms.v55n4.22.04 UR - https://global-sci.org/intro/article_detail/jms/21161.html KW - Gorenstein projective modules, $\mathfrak{X}$-Gorenstein projective modules, $\mathfrak{X}$-Gorenstein projective dimensions, the Auslander’s theorem. AB -
In this paper, we mainly investigate the $\mathfrak{X}$-Gorenstein projective dimension of modules and the (left) $\mathfrak{X}$-Gorenstein global dimension of rings. Some properties of $\mathfrak{X}$-Gorenstein projective dimensions are obtained. Furthermore, we prove that the (left) $\mathfrak{X}$-Gorenstein global dimension of a ring $R$ is equal to the supremum of the set of $\mathfrak{X}$-Gorenstein projective dimensions of all cyclic (left) $R$-modules. This result extends the well-known Auslander's theorem on the global dimension and its Gorenstein homological version.