TY - JOUR T1 - Regularity for 3-D MHD Equations in Lorentz Space $L^{3,∞}$ AU - Liu , Xiangao AU - Liu , Yueli AU - Liu , Zixuan JO - Communications in Mathematical Research VL - 1 SP - 107 EP - 135 PY - 2022 DA - 2022/10 SN - 39 DO - http://doi.org/10.4208/cmr.2021-0048 UR - https://global-sci.org/intro/article_detail/cmr/21080.html KW - Lorentz space, backward uniqueness, MHD equations. AB -
The regularity for 3-D MHD equations is considered in this paper. It is proved that the solutions $(v,B,p)$ are Hölder continuous if the velocity field $v\in L^∞(0,T;L^{3,∞}_x (\mathbb{R}^3))$ with local small condition $$r^{−3}|\{ x∈B_r(x_0):|v(x,t_0)|>εr^{−1}\}|≤\varepsilon$$ and the magnetic field $B∈L^ ∞(0,T;VMO^{−1} (\mathbb{R}^3))$.