TY - JOUR T1 - On Local Wellposedness of the Schrödinger-Boussinesq System AU - Shao , Jie AU - Guo , Boling JO - Journal of Partial Differential Equations VL - 4 SP - 360 EP - 381 PY - 2022 DA - 2022/10 SN - 35 DO - http://doi.org/10.4208/jpde.v35.n4.5 UR - https://global-sci.org/intro/article_detail/jpde/21054.html KW - Schrödinger-Boussinesq system, Cauchy problem, local wellposedness, low regularity. AB -
In this paper we prove that the Schrödinger-Boussinesq system with solution $(u,v,$ $(-\partial_{xx})^{-\frac12} v_t)$ is locally wellposed in $ H^{s}\times H^{s}\times H^{s-1}$, $s\geqslant-{1}/{4}$. The local wellposedness is obtained by the transformation from the problem into a nonlinear Schrödinger type equation system and the contraction mapping theorem in a suitably modified Bourgain type space inspired by the work of Kishimoto, Tsugawa. This result improves the known local wellposedness in $ H^{s}\times H^{s}\times H^{s-1}$, $s>-{1}/{4}$ given by Farah.