TY - JOUR T1 - Negligible Obstructions and Turán Exponents AU - Jiang , Tao AU - Jiang , Zilin AU - Ma , Jie JO - Annals of Applied Mathematics VL - 3 SP - 356 EP - 384 PY - 2022 DA - 2022/08 SN - 38 DO - http://doi.org/10.4208/aam.OA-2022-0008 UR - https://global-sci.org/intro/article_detail/aam/20881.html KW - Extremal graph theory, turán exponents, bipartite graphs. AB -
We show that for every rational number $r∈(1,2)$ of the form $2−a/b,$ where $a, b∈\mathbb{N}^+$ satisfy $$\lfloor b/a\rfloor ^3 ≤a≤b/(\lfloor b/a\rfloor +1)+1,$$ there exists a graph $F_r$ such that the Turán number ${\rm ex}(n,F_r)=Θ(n^r).$ Our result in particular generates infinitely many new Turán exponents. As a byproduct, we formulate a framework that is taking shape in recent work on the Bukh–Conlon conjecture.