TY - JOUR T1 - Superconvergence of Finite Element Approximations of the Two-Dimensional Cubic Nonlinear Schrödinger Equation AU - Wang , Jianyun AU - Tian , Zhikun JO - Advances in Applied Mathematics and Mechanics VL - 3 SP - 652 EP - 665 PY - 2022 DA - 2022/02 SN - 14 DO - http://doi.org/10.4208/aamm.OA-2020-0268 UR - https://global-sci.org/intro/article_detail/aamm/20279.html KW - Superconvergence, nonlinear Schrödinger equation, finite element method, elliptic projection. AB -
The superconvergence of a two-dimensional time-independent nonlinear Schrödinger equation are analyzed with the rectangular Lagrange type finite element of order $k$. Firstly, the error estimate and superclose property are given in $H^1$-norm with order $\mathcal{O}(h^{k+1})$ between the finite element solution $u_h$ and the interpolation function $u_I$ by use of the elliptic projection operator. Then, the global superconvergence is obtained by the interpolation post-processing technique. In addition, some numerical examples with the order $k = 1$ and $k = 2$ are provided to demonstrate the theoretical analysis.