TY - JOUR T1 - Strong Convergence of the Euler-Maruyama Method for Nonlinear Stochastic Volterra Integral Equations with Time-Dependent Delay AU - Qi , Siyuan AU - Lan , Guangqiang JO - Journal of Computational Mathematics VL - 3 SP - 437 EP - 452 PY - 2022 DA - 2022/02 SN - 40 DO - http://doi.org/10.4208/jcm.2010-m2020-0129 UR - https://global-sci.org/intro/article_detail/jcm/20245.html KW - Stochastic Volterra integral equation, Euler-Maruyama method, Strong convergence, Time-dependent delay. AB -
We consider a nonlinear stochastic Volterra integral equation with time-dependent delay and the corresponding Euler-Maruyama method in this paper. Strong convergence rate (at fixed point) of the corresponding Euler-Maruyama method is obtained when coefficients $f$ and $g$ both satisfy local Lipschitz and linear growth conditions. An example is provided to interpret our conclusions. Our result generalizes and improves the conclusion in [J. Gao, H. Liang, S. Ma, Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay, Appl. Math. Comput., 348 (2019) 385-398.]