TY - JOUR T1 - Convergence of the Weighted Nonlocal Laplacian on Random Point Cloud AU - Shi , Zuoqiang AU - Wang , Bao JO - Journal of Computational Mathematics VL - 6 SP - 865 EP - 879 PY - 2021 DA - 2021/10 SN - 39 DO - http://doi.org/10.4208/jcm.2104-m2020-0309 UR - https://global-sci.org/intro/article_detail/jcm/19915.html KW - Weighted nonlocal Laplacian, Laplace-Beltrami operator, Point cloud KW - High-dimensional interpolation. AB -
We analyze the convergence of the weighted nonlocal Laplacian (WNLL) on the high dimensional randomly distributed point cloud. Our analysis reveals the importance of the scaling weight, $\mu \sim |P|/|S|$ with $|P|$ and $|S|$ being the number of entire and labeled data, respectively, in WNLL. The established result gives a theoretical foundation of the WNLL for high dimensional data interpolation.