TY - JOUR T1 - Borderline Weighted Estimates for Commutators of Fractional Integrals AU - Wang , Zhidan AU - Wu , Huoxiong AU - Xue , Qingying JO - Analysis in Theory and Applications VL - 3 SP - 404 EP - 425 PY - 2021 DA - 2021/09 SN - 37 DO - http://doi.org/10.4208/ata.2021.lu80.08 UR - https://global-sci.org/intro/article_detail/ata/19881.html KW - Commutators, fractional integrals, borderline weighted estimates, Fefferman-Stein inequality. AB -
Let $I_{\alpha,\vec{b}}$ be the multilinear commutators of the fractional integrals $I_{\alpha}$ with the symbol $\vec{b}=(b_1, \cdots,b_k )$. We show that the constant of borderline weighted estimates for $I_{\alpha}$ is $\frac{1}{{\varepsilon}}$, and for $I_{\alpha,{\vec{b}}}$ is $\frac{1}{{\varepsilon}^{k+1}}$ with each $b_i$ belongs to the Orlicz space $Osc_{\exp L^{s_i}}$.