TY - JOUR T1 - Analytic Riemann Theta Function Solutions of Coupled Korteweg-de Vries Hierarchy AU - Jia , Minxin AU - Geng , Xianguo AU - Zhai , Yunyun AU - Wei , Jiao AU - Liu , Huan JO - East Asian Journal on Applied Mathematics VL - 4 SP - 732 EP - 754 PY - 2021 DA - 2021/08 SN - 11 DO - http://doi.org/ 10.4208/eajam.090221.100421 UR - https://global-sci.org/intro/article_detail/eajam/19370.html KW - Coupled KdV hierarchy, trigonal curve, Riemann theta function solution. AB -
Coupled Korteweg-de Vries hierarchy associated with a 3 × 3 matrix spectral problem is derived via a stationary zero-curvature equation and Lenard recursion equations. Resorting to the characteristic polynomial of the Lax matrix for coupled Kortewegde Vries hierarchy, we introduce a trigonal curve $\mathscr{K}_g$ with three infinite points and establish the corresponding Baker-Akhiezer function and a meromorphic function on $\mathscr{K}_g$. Coupled Korteweg-de Vries equations are decomposed into systems of ordinary differential equations of Dubrovin-type. Analytic Riemann theta function solutions are obtained by using asymptotic expansions of the Baker-Akhiezer function and a meromorphic function and their Riemann theta function representations.