TY - JOUR T1 - Linear Maps Preserving Idempotency of Products of Matrices on Upper Triangular Matrix Algebras AU - Qi , Jing AU - Ji , Guoxing JO - Communications in Mathematical Research VL - 3 SP - 253 EP - 264 PY - 2021 DA - 2021/07 SN - 25 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19332.html KW - linear map, matrix, idempotent, product of two matrices, triple Jordan product of two matrices. AB -
Let $\mathcal{T}_n$ be the algebra of all $n × n$ complex upper triangular matrices. We give the concrete forms of linear injective maps on $\mathcal{T}_n$ which preserve the nonzero idempotency of either products of two matrices or triple Jordan products of two matrices.