TY - JOUR T1 - Lipschitz Estimates for Commutators of $N$-Dimensional Fractional Hardy Operators AU - Zheng , Qingyu AU - Fu , Zunwei JO - Communications in Mathematical Research VL - 3 SP - 241 EP - 245 PY - 2021 DA - 2021/07 SN - 25 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19331.html KW - commutator, $n$-dimensional fractional Hardy operator, Lipschitz function. Herz space. AB -
In this paper, it is proved that the commutator $\mathcal{H}_{β,b}$ which is generated by the $n$-dimensional fractional Hardy operator $\mathcal{H}_β$ and $b\in \dot{Λ}_α(\mathbb{R}^n)$ is bounded from $L^P(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, where $0<α<1,1<p, q<∞$ and $1/p-1/q=(α+β)/n$. Furthermore, the boundedness of $\mathcal{H}_{β,b}$ on the homogenous Herz space $\dot{K}_q^{α,p}(\mathbb{R}^n)$ is obtained.