TY - JOUR T1 - Implicit-Explicit Runge-Kutta-Rosenbrock Methods with Error Analysis for Nonlinear Stiff Differential Equations AU - Huang , Bin AU - Xiao , Aiguo AU - Zhang , Gengen JO - Journal of Computational Mathematics VL - 4 SP - 599 EP - 620 PY - 2021 DA - 2021/05 SN - 39 DO - http://doi.org/10.4208/jcm.2005-m2019-0238 UR - https://global-sci.org/intro/article_detail/jcm/19154.html KW - Stiff differential equations, Implicit-explicit Runge-Kutta-Rosenbrock method, Order conditions, Convergence. AB -
Implicit-explicit Runge-Kutta-Rosenbrock methods are proposed to solve nonlinear stiff ordinary differential equations by combining linearly implicit Rosenbrock methods with explicit Runge-Kutta methods. First, the general order conditions up to order 3 are obtained. Then, for the nonlinear stiff initial-value problems satisfying the one-sided Lipschitz condition and a class of singularly perturbed initial-value problems, the corresponding errors of the implicit-explicit methods are analysed. At last, some numerical examples are given to verify the validity of the obtained theoretical results and the effectiveness of the methods.