TY - JOUR T1 - Asymptotic Property of Approximation to $x^α$sgn$x$ by Newman Type Operators AU - Zhan , Qian AU - Xu , Shusheng JO - Communications in Mathematical Research VL - 3 SP - 193 EP - 199 PY - 2021 DA - 2021/05 SN - 27 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19082.html KW - rational approximation, asymptotic property, Newman type operator. AB -
The approximation of $|x|$ by rational functions is a classical rational problem. This paper deals with the rational approximation of the function $x^α$sgn$x$, which equals $|x|$ if $α = 1$. We construct a Newman type operator $r_n(x)$ and show $$\mathop{\rm min}\limits_{|x|≤1} \{|x^α{\rm sgn}x − r_n(x)| \} ∼ Cn^{−\frac{α}{2}}e^{−\sqrt{2nα}},$$ where $C$ is a constant depending on $α$.